Problem 9(a)

In a Flyback converter operating in steady state, $V_{\rm in}=48V$, duty-ratio D=0.385, $N_1/N_2=6$, the magnetizing inductance $L_{\rm m1}=150\,\mu H$, and the switching-frequency $f_s=200\,kHz$. Neglect the leakage inductances and assume this converter to be lossless. Assume the output voltage to be ripple-free.

- (a) This converter is operating at the output power P_o at which the flux in the core is at the border of incomplete-demagnetization and the complete-demagnetization modes (similar to the border of continuous and the discontinuous current-conduction modes in non-isolated dc-dc converters).
 - 1. Calculate the output voltage V_0 .
 - Calculate and draw the waveforms of the input current, and the current supplied to the
 output stage consisting of the parallel combination of the output capacitor and the loadresistance.
 - 3. Calculate the output power P_0 .
- (b) If this converter is operating at double the power calculated in part (a), calculate the following:
 - 1. The output voltage V_0 .
 - Calculate and draw the waveforms of the input current, and the current supplied to the
 output stage consisting of the parallel combination of the output capacitor and the loadresistance.

$$V_0 = 5V$$
 $T_{in}(avg) = \frac{11.38}{48} = 0.237A$
 $\hat{T}_{in} T_{in}(0) = \frac{48 \times 0.385 \times 5 \text{ M}}{150 \text{ M}} = 0.616 \text{ A}$
 $\hat{T}_{in} T_{in}(0) = 0.3076 \text{ A}, \quad \hat{T}_{in} = 0.9236$
 $\hat{T}_{in} = 6 \hat{T}_{in} = 5.54/6 \text{ A}$

Problem 9 (b) Suppose an industrial plant is served from a three-phase 208 V (RMS line-line) transformer. The real power demand of the plant is 80 kW at a power factor of 0.5 (lag).

(i) Find the apparent power and RMS line current magnitude.

$$P_{3\phi} = 80 \text{ kW}$$

 $= \sqrt{3} V_{LL} I_L \cos \theta$
 $= S_{3\phi} \cos \theta$
 $\Rightarrow S_{3\phi} = \frac{80 \text{ kW}}{0.5} = 160 \text{ kVA}$
 $I_L = \frac{80}{\sqrt{3}(208)(0.5)} = 444 \text{ A}$

(ii) Suppose the power factor is corrected to 0.9 (lag) with capacitor banks. Find the new apparent power and RMS line current magnitude.

$$S_{3\phi} = \frac{80 \text{ kW}}{0.9}$$

= 88.9 kVA
 $I_L = \frac{80}{\sqrt{3}(208)(0.9)} = 247 \text{ A}$

(iii) Suppose the line losses before power factor correction were 4 kW. What are the line losses after power factor correction?

$$\frac{P_{loss,before}}{P_{loss,after}} = \frac{I_{L,before}^2}{I_{L,after}^2}$$

$$\Rightarrow P_{loss,after} = 4 \text{ kW} \times \frac{247^2}{444^2}$$

$$= 1.24 \text{ kW}$$